Overview of SCR and SNCR solutions

Carolinas Air Pollution Control Association

Presentation by: Julien Wouters, Regional Sales Manager YARA North America Inc.

Introduction

 YARA : Norwegian Group
Fertilizers and urea production, Air cleaning treatment solutions, miscellaneous industrials solutions.

SCR/SNCR :

30 years of experience, over 600 references, global coverage.

Our planet faces massive challenges

9,8 billion +32% People

+ 50 %

Increased food production

-40 to -70 %

Reduced greenhouse gas emissions*

Source: OECD, FAO, UN DESC * To stay within the 2°C goal by 2050

Harmful effects of NOx

• $NOx = NO, NO_2$

• Acid Rain :

Change of PH level of soil and water impacts ecosystems plants, wildlife.

 Smog : Asthma, lungs irritation, birth defect.

NOx Removal : Theory of reactions

SCR : Selective catalytic reduction

Converting NOx by injection of a reagent downstream from the combustion source. The chemical reaction is accelerated by a catalyst which is not consumed by the process.

SNCR : Selective Noncatalytic Reduction Reagent is directly injected without the presence of a catalyst

NOx Removal : Theory of reactions

- Aqueous Ammonia (NH4OH): $4NO + 4NH3 + O2 \rightarrow 4N2 + 6H2O$ $6NO2 + 8NH3 \rightarrow 7N2 + 12H2O$

 Urea solution CO(NH2)2 : CO(NH2)2 + 2NO + ½ O2 → 2 N2 + CO2 + 2H2O

NOx Destruction : Theory of reactions

Ammonia Slip :

It is not possible to have 100% efficiency NH3 / NOx distribution

Ammonia is slightly overdosed and the unreacted NH3 is leaving the System without being converted.

Reagents for DeNOx System

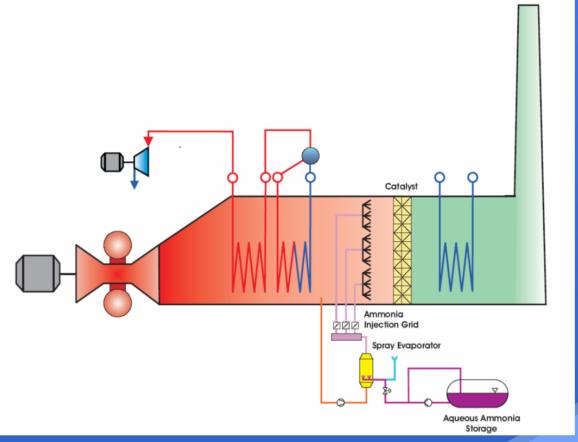
Ammonia

Reaction is more direct, higher efficiency Freezing point of ammonia solution (24%): -53°C/-64°F

Urea solution

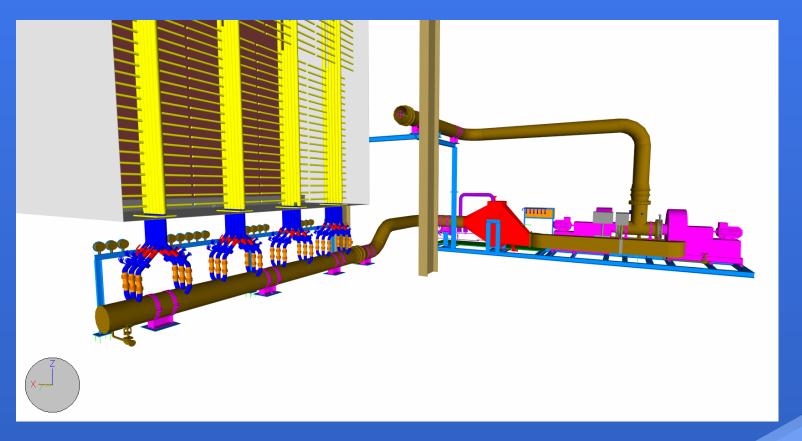
Reaction more complex, urea separates into NH3 and isocyanic acid (HNCO), lower efficiency Urea solution (40%) is crystalizing at temperatures below 10°C/50°F,

Isocyanic acid (HNCO) is corrosive


System Overview

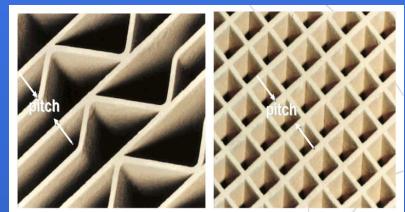
Ammonia storage and injection system

Ammonia Flow control Unit (AFCU) and vaporizing system


Ammonia injection grid (AIG)

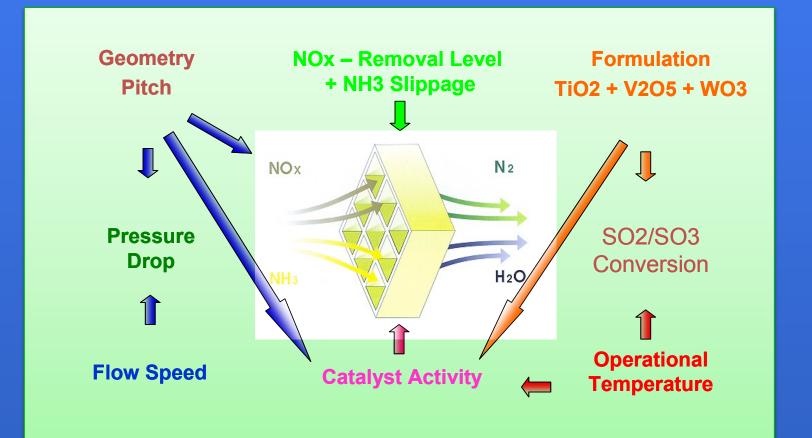
Catalyst and Reactor

SCR TechnologySystem overview



10

Catalyst types
Honeycomb
Plate
Corrugated


The pitch is defined as the center to center distance from one plate/wall to the other.

Catalyst design

12

Performance

SCR system can reach from 75% up to 95% NOx reduction ratio.

Highest performance are 2PPMVD NOx out and 2 PPMVD NH3 slip.

2 to 5 years life time guarantee for catalyst

Constraints

Operating temperature range Min:190°C / 375°F Max : 450°C/ 850°F (few catalyst allows up to 600°C/1100°F)

Exhaust Flow must be uniformly distributed across the catalyst

Deactivation of catalyst with time

Constraints

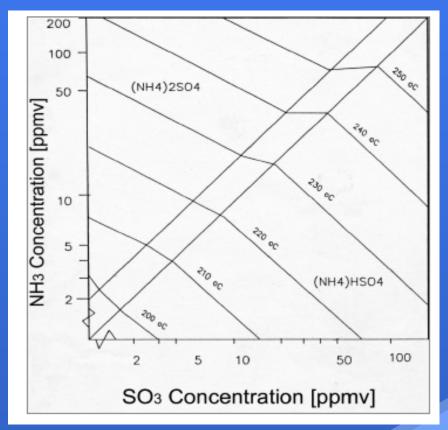
Pressure drop to be considered

Damages due to ashes, high dust

Sensitive to certain pollutants : Arsenic, Phosphorus, Potassium

Side reactions : SO3 (corrosion), Ammonium (Bi)Sulfate (clogging)

SCR TECHNOLOGY


Side Reactions

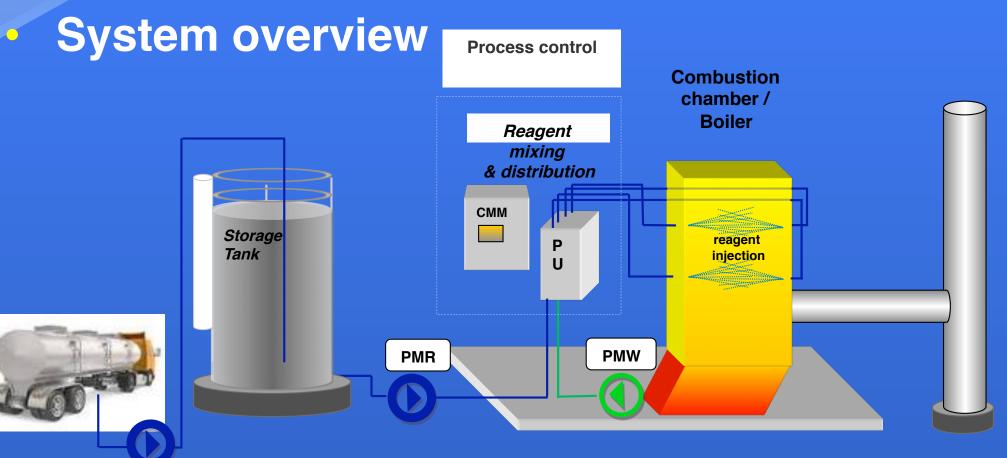
 $\textbf{2SO2} + \textbf{O2} \rightarrow \textbf{2SO3}$

Ammonium Bisulfate (dusty) (NH4)2SO4

Ammonium Sulfate (sticky) NH4HSO4

Sulfuric Acid H2SO4 (corrosion)

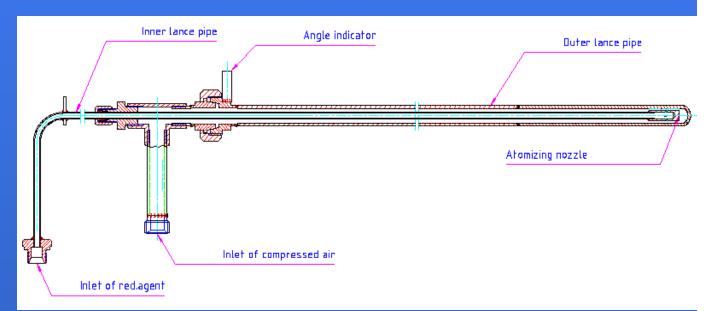
CAPEX


Wide range depending on scope, sizing and performance required

Catalyst Cost can represent up to 40%

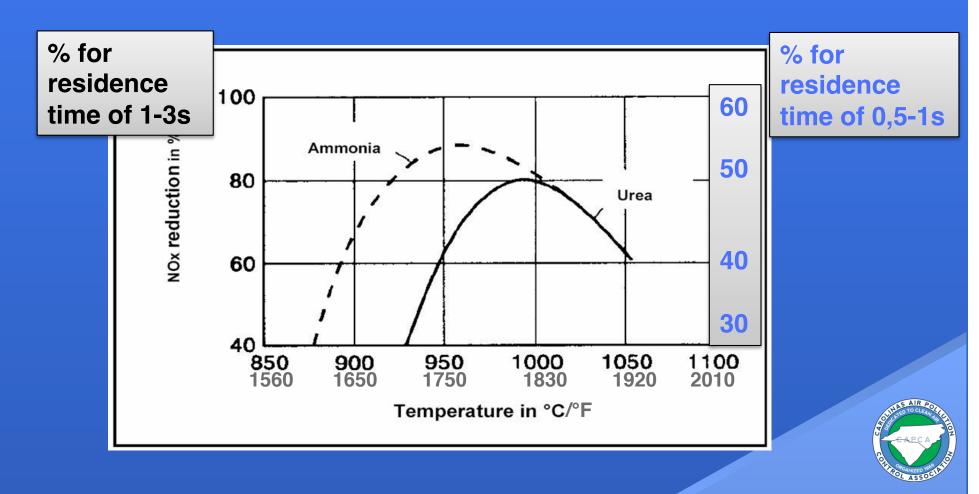
Unloading, storage, injection and catalyst USD 750K – 2,000K* for reduction rate >80%

*excl. installation/erection

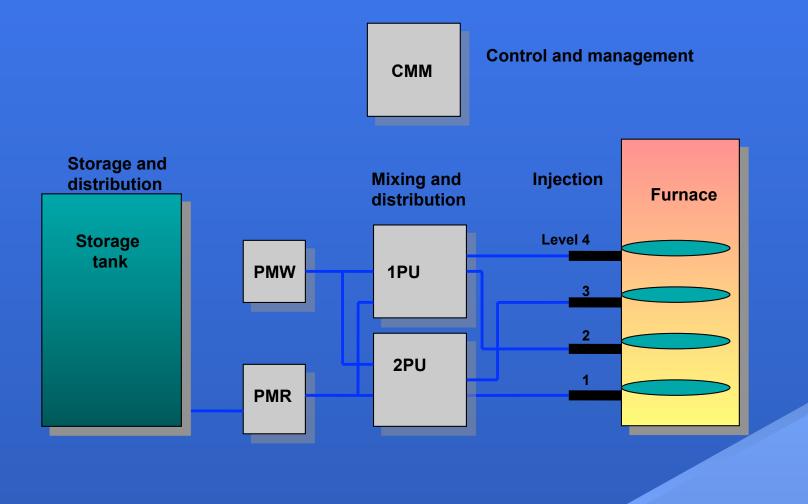

Unloading pump

PMR = Pump module for reagent PMW = Pump module for water

Injection Lances



CAPCA-CA


19

Residence time and Temperature

20

Injection on multiple levels

CAPCA CAPCA

Performance

From 30% to 90% NOx reduction ratio

Coal fired plants < 100 MWth \rightarrow 30-50 % WtE/Biomass < 90 MWth \rightarrow <= 60% Cement / Kilns \rightarrow up to 90% Industrial Kilns \rightarrow 20-60% Large Size Boiler (~ 220 MW) \rightarrow ~20-30%

Constraints

Operating Temperature : Min 850 °C/1560°F Max 1100°C/ 2010 °F

Residence time >= 0.5 s

Sensitive to reagent type : Ammonia vs Urea

Injection of water and energy loss (boiler)

CAPEX

Wide range depending on scope, sizing and performance required

Unloading, storage, injection USD 200K – 500K* excl. installation/erection

Comparison SCR/SNCR

	SNCR	SCR
NOx reduction Efficiency	90% best, 65% avg	Up to 95%
Design Temperatures	From 1,500 to 2,000 °F	From 375 to 850 °F
Reagent	Ammonia/Urea	Ammonia/Urea
Molar Ratio (NH3/NO)		11
Ammonia Slip	7 ppmvd best, 15 ppmvd avg	2 ppmvd
Catalyst	no	yes
Reactor	no	yes
Maintenance	minor	Catalyst replacement or regeneration to be considered
Pressure Drop	No	Yes
Capex	USD 500K	USD 2,000K

Conclusions

- Proven technologies
- Not a "one size fits all" type of solution
- Lower temperature, higher complexity
- Consideration for future regulations

